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Abstract: I give a summary of my research with Prof. Dr. Reinhard Schlickeiser. It mainly took place
in the 1990s, when the Compton Gamma Ray Observatory was giving a startling new view of the γ-ray
sky. Our work focused on particle acceleration and radiation processes in the jets of active galactic
nuclei (AGN). We pioneered the external Compton scattering model of blazars, where photons from
outside the jet are intercepted and scattered to high energies by the radio-emitting electrons within the
jet. Although we originally focused on external photons from the accretion disks of AGN, this process
has been extended to include a range of external photon sources, and is now established as the primary
source of γ rays from flat spectrum radio quasars.
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No one remembers the former generations,
and even those yet to come
will not be remembered
by those who follow them.

Ecclesiastes 1:11, New International Version

1. Introduction

I am extremely pleased to wish a happy 70th birthday to Reinhard Schlickeiser. Reinhard
had a profound effect on my research in γ-ray and cosmic-ray astrophysics. He has been a
strong advocate for many researchers in high-energy, cosmic-ray and plasma astrophysics,
none more so than myself. His influence has improved our understanding of the cosmic-ray
and γ-ray sky in innumerable ways. Here I will focus on those few subjects on which we
collaborated.

It is already six years since I retired from the US Naval Research Laboratory, so I unfortu-
nately do not have new research to present. I think, however, that it is appropriate on this
occasion to reflect back to the heady days of the 1990s when space-based γ-ray astronomy was
emerging from its beginnings, and ground-based γ-ray astronomy was being born. During
this period of confusion, Reinhard and I were in the middle of the mix, trying to understand
the meaning of the new results coming in. I only hope that younger researchers are able
to participate in an excitement similar to what we encountered as the γ-ray sky was being
unveiled.

I began this article with a dark epigraph from the Book of Ecclesiastes. This came to
mind when, years ago, I encountered a younger researcher and rising star in our field who
seemed not to know who Reuven Ramaty was. Reuven supervised my first postdoc at NASA’s
Goddard Space Flight Center from 1984–1986. An energetic and driven scientist (Reinhard’s
colleague Ian Lerche referred to Ramaty as an "astrophysical engineer"), Reuven was a guiding
light to myself and also, I believe, Reinhard. He had a Solar Satellite named after him, namely
the Reuven Ramaty High Energy Solar Spectroscopic Imager. (Reuven died in 2001.) It dismayed
me to find that Ramaty was almost forgotten, but this is in line with the presumption that
everything before one’s PhD is past history. Well, Ecclesiastes also says that There is nothing
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new under the Sun. But I’ll be writing mainly about distant galaxies and here, at least, are many
new things.

2. Meeting Reinhard

Though I have met hundreds of scientists in my life, the memory of my initial meeting
with Reinhard remains vivid. It was at a 1986 NORDITA workshop in Copenhagen organized
by Roland Svensson on high-energy astrophysics, in the same room that Neils Bohr had held
his famous meetings on quantum mechanics. One of the interesting questions of the time was
the reason for the rather narrow range of the 2–10 keV X-ray spectral indices observed from
AGN, which surely reflected a feature of particle acceleration. Reinhard’s reputation as an
expert in particle acceleration, particularly second-order processes, was already well known
[36,37]. His approach was more analytical than numerical, so I felt a kinship and we struck up
a correspondence.

Reinhard kindly invited to visit the MPI für Radioastronomie in Bonn where he was then
working. We first treated a focused problem on radiation physics in order to see how well
we could work together. I had already known Apostolos Mastichiadis since 1985, and we
became interested in the work of his PhD thesis on the triplet pair production process where
ultrarelativistic electrons pair-produce by interacting with photons (eγ→ ee+e−) [29–31]. A
full numerical treatment requires the use of the extremely complex cross sections derived by
Haug [25,26].

Using analytic arguments, we derived a simple expression for the energy-loss rate of ultra-
relativistic electrons with Lorentz γ interacting with isotropically distributed soft photons
with dimensionless energy ε = Eph/mec2 � 1 and number density nph, given by

dγ

dt
∼=

4
3

α f cσTnph (
γ

ε
)1/2 (1)

[15]. Compared to the exact numerical results of Mastichiadis and colleagues [29,30], this
expression is accurate to a factor of 3 over more than 5 orders of magnitude in the variable εγ
characterizing the invariant energy of the interaction. (Here α f

∼= 1/137 is the fine structure
constant and σT = 6.6525× 10−25 cm2 is the Thomson cross section.) The mean Lorentz factor
of the produced electrons or positrons is 〈γ1〉 ∼= (4/3)(γ/ε)1/2. The paper goes on to examine
the importance of this process in pair cascades initiated in extreme environments, such as
Cygnus X-3 [38] and SN1987A [41], again comparing with detailed numerical results [31].

3. Enter the Compton Gamma-Ray Observatory

By 1990, space-based γ-ray astronomy had completed its pioneering phase, with three
satellites—OSO-3, SAS-2, and COS-B—having detected γ rays with energies & 30 MeV (see
[12] for a more detailed summary). OSO-3 and SAS-2 had discovered the γ-ray glow from the
band of the Milky Way, a few γ-ray pulsars (Crab, Vela, and Geminga), and an isotropic γ-ray
background. COS-B, the most advanced γ-ray telescope of the three, had reported 25 γ-ray
sources, most of which were along the Galactic plane. But for the research that Reinhard and
I were to be most interested in, the COS-B discovery of 3C 273, with emissions > 100 MeV,
stood out.

Yet the appearance of the sole quasar 3C 273 on this list of sources did not give a clear
indication of what was to come. 3C 273 is an unusual object in that, though radio-loud, it
has an extraordinarily luminous accretion disk, suggesting that the emission might emanate
directly from the disk itself. The 1983 review by Bassani & Dean [6] cited a handful of γ-ray
AGN, but it was a mixed bag. These included the radio-quiet Seyfert galaxies NGC 4151 and
MCG 6-11-11, the radio galaxy Centaurus A, the peculiar galaxy NGC 1275, and the quasar
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3C 273. But only 3C 273 was detected at & 100 MeV energies—by COS-B—whereas the others
had detected emissions extending to only a few hundred keV.

The Gamma-Ray Observatory, soon to be renamed the Compton Gamma-Ray Observa-
tory (CGRO), was launched 5 April 1991. Its high-energy detector, the Energetic Gamma Ray
Experiment Telescope (EGRET), was a spark chamber that tracked a γ ray after it converted
to an electron-positron pair by pair-production interactions with nuclei in the thin tantalum
foils within the gas-filled spark chamber. It was sensitive to photons with energies between
≈ 30 MeV – 10 GeV. I was working as a research scientist at Rice University in Houston, Texas
when it was launched. The CGRO researchers soon reported the detection of 3C 279, not, to
our surprise, 3C 273. This indicated that the γ-ray emission from 3C 273 was variable, so must
be associated with a rather compact emission region, because if it were from an extended
region, light travel times from the different emission regions would erase the variability.

I visited Reinhard at the MPIfR in August, 1991. By then we had learned that PKS
0528+134 had also been detected, so the race was on to determine what these sources had in
common. I had little knowledge of radio-loud AGNs at that time, as my previous research
had focused on gamma-ray bursts and relativistic thermal plasmas to account for 100 keV –
MeV emissions from sources such as Cyg X-1. I undertook a crash course to learn about radio-
bright AGNs. The features they had in common was that they all contained relativistic jets
that emitted intense radio radiation. They were also associated with apparent superluminal
motions of the jet that occur when viewing the relativistically ejected blob slightly off-axis.
Furthermore, they divided into the flat-spectrum radio quasars (FSRQs) with intense emission
lines, indicating the presence of a bright nuclear accretion disk illuminating clouds of the
broad-line region to make strong atomic-line radiations, and BL Lac objects (BLs), with weak
or absent emission lines. Collectively, these sources are referred to as blazars.

Reviewing the literature, we focused on the work by Blandford and Königl [7], which
invoked relativistic jets of radio-emitting electrons to explain the radio-loud AGNs. Due to the
Doppler boosting of the radiation, they are particularly luminous when viewed along the jet
axis. Alan Marscher had also written an important paper [28] where he calculated the multi-
wavelength spectra emitted by such jets. In his work, high-energy emissions were made by the
synchrotron self-Compton process (SSC), where the radio-emitting electrons Compton scatter
their own radio emission to high energies. Yet we could not make the SSC process account for
the extraordinarily luminous γ-ray emissions of 3C 279 or PKS 0528+134 in either its energetic
output, which dominated the spectral energy distribution of the detected radiation, or the
photon frequency at the peak of its spectral energy distribution. This peak generally landed
at hard X-ray range for standard parameters used to explain the radio emissions from these
sources.

During the same period, there had been interest in understanding why the inferred
Doppler factors Γ of the relativistic jets were in the range from ≈ 5–50. One idea was that
relativistic electrons were slowed through Compton drag to reach terminal Lorentz factors in
this range [33]. The Compton drag was accomplished by scattering photons of the external
radiation field. Melia and Königl [32], in particular, made a detailed study where the accretion-
disk photons were responsible for the relativistic drag on highly relativistic electrons traveling
rectilinearly outward along the axis of the accretion disk. But there was a big problem in
using this model to explain the radio emissions of blazars: electrons traveling in straight lines
cannot make radio radiation, which requires tangled electrons in the outflowing blob.

Reinhard and I had the idea—which looks obvious in retrospect, as all good ideas
should—that a proper model of the multi-wavelength emission, including the γ-ray emission,
must involve a relativistic blob of outflowing plasma entraining relativistic electrons. In the
stationary frame of this blob, the electrons have a tangled distribution to make the radio and
SSC radiation, but intercept external photons and scatter them through the Compton process
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to high energies to make the γ rays. The effects of the Lorentz factor Γ of the blob leaving
the central nucleus combined with the individual Lorentz factors γ of the electrons in the
stationary frame of the blob produce intense γ-ray emissions.

Joined by Mastichiadis [20], we worked out the physics of this system for photons
entering directly from behind the jet, as would be the case for accretion disk photons when the
blob far from the nucleus. We found that the γ-ray emission from disk photons entering the
jet from behind would be most intense not when the blob was observed exactly along the jet
axis, but rather at an angle θpk

∼= β, where β = 1/
√

1− 1/Γ2. This was precisely the angle at
which such sources show largest apparent superluminal motion of their radio emissions! We
wrote the paper and submitted it to the journal Nature, from which it was promptly rejected.
I was extremely depressed and ready to shelve the paper, but Reinhard encouraged me to
resubmit it to another journal. It was accepted in Astronomy & Astrophysics Letters, and has by
now garnered some 500 citations.

Our paper [20] paved the way for future analyses, but of course did not settle all questions.
Because of the kinematics when scattering accretion-disk photons entering from behind the
jet, sources observed almost directly down the jet axis would be far less γ-ray luminous and
show generally smaller superluminal speed. We speculated that BLs were those radio-loud
AGNs observed along the jet axis. Though this generally agreed with the observed differences
between FSRQs and BLs, the true picture has been shown to be more complicated. The γ rays
from BLs are primarily SSC emissions. Their weaker accretion disks and broad-line emissions
make external Compton scattering, as the process is referred, much less important than the
SSC process in BLs as compared to FSRQs.

The EGRET experiment on the Compton Gamma Ray Observatory was a breakthrough
mission with many spectacular new discoveries, most notably the detection of beamed gamma-
ray emission from extragalactic point sources at large redshifts. At such time, it is very
importance to publish the first mostly correct theoretical explanation, and the passage of time
has established external Compton process as the correct radiation mechanism.

4. Further γ-ray Blazar Studies

Reinhard and his family visited me in Houston, TX, in the spring of 1992, and we worked
out the detailed scattering kinematics and production spectra for this model, now taking into
account the range of angles of photons from an extended accretion disk [17], using a standard
Shakura-Sunyaev disk model [42]. We also used the full Compton cross section, including
both Compton scattering in the Thomson and KN regime, as Reinhard had shown that strong
deviations from the Thomson regime already occur when the dimensionless photon energy
ε′ = E′/mec2 in the rest frame of the electron takes place even when ε′ . 0.1 [35]. The
major simplifying assumption was the head-on approximation, where the direction of the
incident photon’s direction is exactly opposite to the direction of motion of the electron. This
assumption is perfectly justified for ultra-relativistic electrons.

We fitted the γ-ray spectra of 3C 279, 3C 273 and Mkn 421, demonstrating that intense
γ-ray emission was made by this process. We also calculated energy-loss rates of the electrons
in external Compton scattering, which are important for dynamical treatments of these sources.
Our paper [17] became one of the "legacy" papers of the blazar Compton era, having now
received over 700 citations. More important than citations is that this model became the
standard starting point with which to model high-energy emission from blazars. Subsequent
improvements to the model invoked external photons from broad-line region clouds [43] and
infrared emission from the cool dusty infrared-emitting torus [3,8].

Excited by the blazar results from CGRO, we wrote a Science paper in 1992 to promote the
new class of γ-ray blazars [16]. The number of blazar detections with EGRET had grown to 14
by May of 1992, with a mixture of superluminal sources, FSRQs, and BLs. The BLs numbered
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4 out of the 14 sources, and would be found to be the most important extragalactic source class
detected by the ground-based air Cherenkov telescopes. The pioneering Whipple telescope
had confidently detected TeV radiation from the Crab nebula only in 1989 [44], establishing
the superiority of the imaging approach after 2 decades of confusing results with the "on-off"
technique. In 1992, the first high-confidence detection of an extragalactic source, Markarian
421, was made with Whipple [34], and the field of γ-ray blazars studies, born in 1991 and
1992, was in full throttle.

I visited Reinhard several times at the MPIfR throughout the 1990s, and we continued
to work out the radiation physics of blazars. One of the problems we examined [18] was the
location of the emission sites of blazars, finding that the pair-production process (γγ→ e+e−)
was particularly important for TeV γ rays in FSRQs as compared to the BL Lac objects, making
FSRQs potentially less luminous TeV γ-ray sources. With Steve Sturner, who was then my
postdoc at the NRL, we completed a long study in 1997 [21] of the radiation physics in the
AGN jets.

Reinhard and I returned later for a final detailed look [19] at radiation processes in blazar
jets, published in 2002. We had been treating the physics of the scattering by transforming the
external photon field into the rest frame of the blob, doing the scattering in the blob frame,
and then transforming back to the observer frame. Georganopoulos, Kirk, and Mastichiadis
[24] showed that it was much simpler for scattering calculations, particularly when using
the full Compton cross section that includes Klein-Nishina effects, to instead transform the
electron spectrum directly to the observer frame and do the scattering in this frame. Except
for dynamical calculations which required electron energy-loss rates in the blob frame, this
approach has proven more convenient.

In the Science paper [16], we also performed a first crude calculation of the blazar contri-
bution to the (apparently) diffuse extragalactic γ-ray background. We showed that blazars are
likely to make up a significant if not dominant part of this emission. This has been confirmed
with the Fermi Gamma-ray Large Area Space Telescope [1,12], although cosmic-ray induced
emissions from star-forming galaxies are also significant, as well as, potentially, a dark-matter
contribution.

One of the happiest outcomes of my visits to Bonn was meeting Reinhard’s extremely
talented PhD student, Markus Böttcher. Markus and I published a study [9] in 1995 of rever-
beration mapping effects on γ-ray photons that pair-produce in response to X-ray variability
of the accretion disk. We later worked together to write many papers on radiation physics [22]
(with Dr. Justin Finke, who was Markus’s PhD student at Ohio University and later my post-
doc at NRL) of and evolutionary scenarios [10] for blazars, and the physics of micro-quasars
[13] and gamma-ray bursts [11]. Dr. Böttcher has gone on to have a successful academic career,
first as a professor at Ohio University in Athens, Ohio, and currently as Professor and Chair
of Astrophysics and Space Physics, North-West University, Potchefstroom, South Africa.

5. Diverging Pathways

By the beginning of the first decade of the new century, our interests were starting
to diverge. We completed a study of particle acceleration through magnetic turbulence in
2000 [40]. Reinhard had always been interested in the fundamental physics of astrophysical
plasmas and cosmic rays, which culminated in his magnum opus Cosmic-Ray Astrophysics
[39]. Although Reinhard encouraged me to continue in this direction and look, for example,
at the physics of dusty plasmas that had then become of great interest, my focus had shifted
to the ultra-high energy sky that was being unveiled by the Auger Observatory and IceCube.
I had also set my sights on the successor to CGRO, the Fermi Gamma-ray Large Area Space
Telescope (GLAST), which was launched in 2008.
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Our last papers together [2,27] were on joint observational campaigns with Fermi and
the High-Energy Stereoscopic Imager HESS in the late 2000s, where we provided theoretical
interpretations for the results of these campaigns. But by then my research, especially with
Armen Atoyan [4,5] (now professor at Concordia University in Montreal, Canada), and with
Soebur Razzaque (currently professor at the University of Johannesburg in South Africa)
and Justin Finke, now staff scientist at NRL [23], had taken center stage. With Professor
Govind Menon of Troy University, Troy, Alabama, I summarized my black-hole research in
a 2009 book-length monograph [14]. Although I visited Reinhard at the Ruhr University
in Bochum after he moved there in 1998 from the MPIfR, my motivation had flagged. The
dogged pursuit of physical truth (the naive reason I went into physics) had been replaced
by the dogged pursuit for external funding. Seeing my productivity decline, and meeting
institutional difficulties on travel and visitors (this criticism of NRL is overshadowed by my
gratitude for the generous support that was provided to me to perform basic research over
more than two decades), I cashed in my chips and retired.

6. Reinhard’s Wisdom

The most important thing I learned from Reinhard, not only by his words but by his
actions, is the importance of collegiality in science. Many of us, and certainly I speak for
myself, chose a path in science by virtue of being asocial, introverted, and hard working.
But to only be a hard worker can threaten colleagues who are not so hard working, so the
human side of science is just as important for all of us who find ourselves not to be the solitary
geniuses that had inspired us (in my case, Newton and Cavendish). Rearranging the American
proverb, Hard work beats talent when talent doesn’t work hard, for the academic world it becomes
Collegiality beats hard work when hard workers are not collegial.

This mirrors the apocryphal story, complete with cultural stereotypes, of the German
and Frenchman who were to present their research for funding to a European Commission.
The German stays up all night to perfect his presentation, but when he meets the Frenchman
before the presentations, he is told that it is all settled: the Frenchman had wined and dined
the head of the Commission and was assured that he, the Frenchman, would be selected.

I also remember well Reinhard’s allegory for conferences and workshops: they are like a
fish market. A conference is the fishmonger showing his fish from a distance, all beautiful,
shiny and fresh, whereas a workshop is when you get nearer to the market and smell that the
fish are starting to rot and do not look so good on closer inspection. A conference is to show
the great side of your work, and a workshop is to examine its shortcomings.

A final bit of wisdom I learned from Reinhard is the importance, at least for astrophysical
theorists who try to understand observations, of being friends with the observers. They
understand the pitfalls of their detectors and limitations of the data, and can give advanced
notice of new results. I had my sources at NRL, NASA’s GSFC and MSFC, and Reinhard
had his at MPIfR and MPI für Extraterrestrische Physik in Garching. They were anxious to
share their new discoveries and see what the theorists might think, especially when they have
results that are as yet unexplained.

My visits to Bonn and Bochum, the cigars and lively conversations, as well as my visits
to Reinhard’s house to meet his wife Wernhild and children Christina and Frank, will remain
treasured memories. Happy 70th birthday, Reinhard, and may you have many, many more!
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